Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2258289

ABSTRACT

BACKGROUND: Nirmatrelvir/ritonavir, the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease inhibitor, reduces the risk of hospitalization and death by coronavirus disease 2019 (COVID-19) but has been associated with symptomatic rebound after therapy completion. METHODS: Six individuals with relapse of COVID-19 symptoms after treatment with nirmatrelvir/ritonavir, 2 individuals with rebound symptoms without prior antiviral therapy and 7 patients with acute Omicron infection (controls) were studied. Soluble biomarkers and serum SARS-CoV-2 nucleocapsid protein were measured. Nasal swabs positive for SARS-CoV-2 underwent viral isolation and targeted viral sequencing. SARS-CoV-2 anti-spike, anti-receptor-binding domain, and anti-nucleocapsid antibodies were measured. Surrogate viral neutralization tests against wild-type and Omicron spike protein, as well as T-cell stimulation assays, were performed. RESULTS: High levels of SARS-CoV-2 anti-spike immunoglobulin G (IgG) antibodies were found in all participants. Anti-nucleocapsid IgG and Omicron-specific neutralizing antibodies increased in patients with rebound. Robust SARS-CoV-2-specific T-cell responses were observed, higher in rebound compared with early acute COVID-19 patients. Inflammatory markers mostly decreased during rebound. Two patients sampled longitudinally demonstrated an increase in activated cytokine-producing CD4+ T cells against viral proteins. No characteristic resistance mutations were identified. SARS-CoV-2 was isolated by culture from 1 of 8 rebound patients; Polybrene addition increased this to 5 of 8. CONCLUSIONS: Nirmatrelvir/ritonavir treatment does not impede adaptive immune responses to SARS-CoV-2. Clinical rebound corresponds to development of a robust antibody and T-cell immune response, arguing against a high risk of disease progression. The presence of infectious virus supports the need for isolation and assessment of longer treatment courses. Clinical trials registration. NCT04401436.

2.
Open Forum Infect Dis ; 9(9): ofac427, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2212860

ABSTRACT

In this study, abnormal levels of myeloid activation, endothelial damage, and innate immune markers were associated with severe coronavirus disease 2019 (COVID-19), while higher levels of metabolic biomarkers (irisin, leptin) demonstrated a protective effect. These data support a model for COVID-19 immunopathogenesis linking robust inflammation and endothelial damage in metabolically predisposed individuals.

3.
Clin Infect Dis ; 75(1): e912-e915, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2017798

ABSTRACT

The development of effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines has been a significant accomplishment. Adverse events are extremely rare, but continued surveillance is important, especially in at-risk populations. In 5 patients with preexisting immune dysregulation, hyperinflammatory syndromes, including hemophagocytic lymphohistiocytosis, developed after SARS-CoV-2 mRNA vaccination. Early recognition of this rare condition is essential.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , COVID-19/prevention & control , Humans , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccination/adverse effects
4.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-2012411

ABSTRACT

In this study, abnormal levels of myeloid activation, endothelial damage and innate immune markers were associated with severe COVID-19, while higher levels of metabolic biomarkers (irisin, leptin), demonstrated a protective effect. These data support a model for COVID-19 immunopathogenesis linking robust inflammation and endothelial damage in metabolically-predisposed individuals.

5.
Front Immunol ; 13: 815833, 2022.
Article in English | MEDLINE | ID: covidwho-1731775

ABSTRACT

The coronavirus disease-2019 (COVID-19) caused by the SARS-CoV-2 virus may vary from asymptomatic to severe infection with multi-organ failure and death. Increased levels of circulating complement biomarkers have been implicated in COVID-19-related hyperinflammation and coagulopathy. We characterized systemic complement activation at a cellular level in 49-patients with COVID-19. We found increases of the classical complement sentinel C1q and the downstream C3 component on circulating blood monocytes from COVID-19 patients when compared to healthy controls (HCs). Interestingly, the cell surface-bound complement inhibitor CD55 was also upregulated in COVID-19 patient monocytes in comparison with HC cells. Monocyte membrane-bound C1q, C3 and CD55 levels were associated with plasma inflammatory markers such as CRP and serum amyloid A during acute infection. Membrane-bounds C1q and C3 remained elevated even after a short recovery period. These results highlight systemic monocyte-associated complement activation over a broad range of COVID-19 disease severities, with a compensatory upregulation of CD55. Further evaluation of complement and its interaction with myeloid cells at the membrane level could improve understanding of its role in COVID-19 pathogenesis.


Subject(s)
COVID-19/immunology , Complement Activation/immunology , Complement System Proteins/immunology , Monocytes/immunology , Adult , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Complement Inactivating Agents/immunology , Cytokines/immunology , Female , Humans , Immunologic Factors/immunology , Male , Middle Aged , Monocytes/virology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL